Assisted morbidity coding: the SISCO.web use case for identifying the main diagnosis in Hospital Discharge Records
Parole chiave:
Coding support systems, Hospital discharge Records, ICD, Morbidity coding, Coding RulesAbstract
Coding morbidity data using international standard diagnostic classifications is increasingly important and still challenging. Clinical coders and physicians assign codes to patient episodes based on their interpretation of case notes or electronic patient records. Therefore, accurate coding relies on the legibility of case notes and the coders' understanding of medical terminology. During the last ten years, many studies have shown poor reproducibility of clinical coding, even recently, with the application of Artificial Intelligence-based models. Given this context, the paper aims to present the SISCO.web approach designed to support physicians in filling in Hospital Discharge Records with proper diagnoses and procedures codes using the International Classification of Diseases (9th and 10th), and, above all, in identifying the main pathological condition. The web service leverages NLP algorithms, specific coding rules, as well as ad hoc decision trees to identify the main condition, showing promising results in providing accurate ICD coding suggestions.
Riferimenti bibliografici
Abraha, Iosief, Alessandro Montedori, Diego Serraino, et al. 2018. “Accuracy of administrative databases in detecting primary breast cancer diagnoses:a systematic review.” BMJ Open 8:e019264. https://doi.org/10.1136/bmjopen-2017-019264.
Almagro, Mario, Raquel Martínez, Soto Montalvo, and Victor Fresno. 2019. “A cross-lingual approach to automatic ICD-10 coding of death certificates by exploring machine translation.” Journal of biomedical informatics 94 (2019): 103207. https://doi.org/10.1016/j.jbi.2019.103207.
Amodio, Emanuele, Fabio Tramuto, Claudio Costantino, et al. 2014. “Diagnosis of influenza: only a problem of coding?”. Med Princ Pract 23:568-73. https://doi.org/10.1159/000364780.
Apache Lucene. n.d. “Welcome to Apache Lucene.” Last accessed November 10, 2024. https://lucene.apache.org/.
Boyle, Joseph S., Antanas Kascenas, Pat Lok, Maria Liakata, and Alison Q. O’Neil. 2023. “Automated clinical coding using off-the-shelf large language models.” Accepted to the NeurIPS 2023 workshop Deep Generative Models For Health (DGM4H), arXiv preprint arXiv:2310.06552 (2023).
Cardillo, Elena, Claudio Eccher, Anna Perri, Vincenzo Della Mea, and Francesco Talin. 2018. “A rule-based Support System for the Validation of Diagnoses coding in the Patient Summary.” In Proceedings of the International Conference on Medical Informatics Europe 2018 (MIE2018), Gothenburg, Sweden, April 24-26, 2018.
Cardillo, Elena, Lucilla Frattura, Salvatore Ciambrini, Claudio Eccher, Elia Nardo, and Carlo Zavaroni. 2019. “Towards the Development of a Web Support System for Improving Accuracy in Coding Discharge Diagnosis.”In Proceedings of the 2019 IEEE Symposium on Computers and Communications (ISCC), Barcelona, Spain, 1147-52. https://doi.org/10.1109/ISCC47284.2019.8969649.
Chao-Wei, Huang, Shang-Chi Tsai, and Yun-Nung Chen. 2022. “PLM-ICD: Automatic ICD coding with pre-trained language models.” In Proceedings of the 4th Clinical Natural Language Processing Workshop, 10–20, Seattle, WA: Association for Computational Linguistics.
Chiò, Adriano, Giovannino Ciccone, Andrea Calvo, et al. 2002. “Validity of hospital morbidity records for amyotrophic lateral sclerosis. A population-based study.” J Clin Epidemiol 55(7): 723-27. https://doi.org/10.1016/s0895-4356(02)00409-2.
CLEF eHealth Lab Series. n.d. “CLEF eHealth 2020 – Task 1: Multilingual Information Extraction.” Last Accessed November 10, 2024. http://clefehealth.imag.fr/clefehealth.imag.fr/index135c.html?page_id=187%20%3E.
Dong, Hang, Matúš Falis, William Whiteley, et al. 2022. “Automated clinical coding: what, why, and where we are?” NPJ Digit. Med. 5(159). https://doi.org/10.1038/s41746-022-00705-7.
Drools. n.d. Last Accessed November 10, 2024. https://www.drools.org.
Eclipse Foundation. n.d. “About.” Last Accessed November 10, 2024. https://eclipse-ee4j.github.io/jersey.
European Health Information Portal. 2023. “Hospital Discharge Records database.”Last Updated January 10, 2023. https://www.healthinformationportal.eu/health-information-sources/hospital-discharge-database-2.
Falis, Matúš, Gema Aryo Pradipta, Dong Hang, et al. 2024. “Can GPT-3.5 generate and code discharge summaries?” Journal of the American Medical Informatics Association 31(10): 2284-93. https://doi.org/10.1093/jamia/ocae132.
Farkas, Richárd, and György Szarvas. 2008. “Automatic construction of rule-based ICD-9-CM coding systems.” BMC Bioinformatics 9 (3): S10.https://doi.org/10.1186/1471-2105-9-S3-S10.
Friedman, Carol, Lyudmila Shagina, Yves Lussier, and George Hripcsak.2004. “Automated Encoding of Clinical Documents Based on Natural Language Processing.” JAMIA 11(11): 392-402. https://doi.org/10.1197/jamia.M1552.
Israel, Robert A. 1990. “Automation of mortality data coding and processing in the United States of America.” World Health Stat Q. 43(4): 259-62.https://pubmed.ncbi.nlm.nih.gov/2293494/.
Italian Ministry of Health. 2000. “Ministerial Decree October 27, 2000, no. 380 - Regolamento recante norme concernenti l’aggiornamento della disciplina del flusso informativo sui dimessi dagli istituti di ricovero pubblici e private.” Gazzetta Ufficiale, 19 dicembre 2000, n. 295.
Italian Ministry of Health. 2024. Rapporto sull’attività di ricovero ospedaliero. Dati SDO Anno 2022. https://www.salute.gov.it/portale/documentazione/p6_2_2_1.jsp?lingua=italiano&id=3441.
Italian Ministry of Labor, Health and Social Affairs. 2008a. “Ministerial Decree December 18, 2008. “Aggiornamento dei sistemi di classificazione adottati per la codifica delle informazioni cliniche contenute nella scheda di dimissione ospedaliera e per la remunerazione delle prestazioni ospedaliere.” Gazzetta Ufficiale, 9 marzo 2009, n. 56.
Italian Ministry of Labor, Health and Social Affairs. 2008b. Classificazione delle malattie, dei traumatismi, degli interventi chirurgici e delle procedure diagnostiche e terapeutiche. Versione italiana della ICD-9-CM, 2007. Roma: Istituto Poligrafico e Zecca dello Stato.
Italian Permanent working table for Digital health in Regions and Autonomous Provinces. 2010. Specifiche tecniche per la creazione del “profilo sanitario sintetico” secondo lo standard HL7-CDA rel. 2. Department for the Digitization of Public Administration and Technological Innovation.
Istituto Superiore di Sanità. n.d. “Medical Subject Headings 2019.” Last Accessed November 10, 2024. https://old.iss.it/site/Mesh/.
Kim, Byung-Hak, and Ganapathi Varun. 2021. “Read, attend, and code: Pushing the limits of medical codes prediction from clinical notes by machines.”In Machine Learning for Healthcare Conference, 196-208. PMLR. Miranda-Escalada, Antonio, Aitor Gonzalez-Agir, Jordi Armengol-Estapé, and Martin Krallinger. 2020. “Overview of Automatic Clinical Coding: Annotations, Guidelines, and Solutions for non-English Clinical Cases at CodiEsp Track of CLEF eHealth 2020.” In Working Notes of CLEF 2020 - Conference and Labs of the Evaluation Forum, CEUR-WS 2696.
Moriyama, Iwao Milton, Ruth M. Loy, Alastair Hamish, Tearloch Robb-Smith, Harry Michael Rosenberg, and Donna L. Hoyert. 2011. History of the statistical classification of diseases and causes of death, edited and updated by H. M. Rosenberg, D. L. Hoyert. DHHS publication, no. (PHS) 2011-1125.
Nonis, Marino, Luigi Bertinato, Laura Arcangeli, et al. 2018. “The evolution of DRG system in Italy: the It-DRG project.” European Journal of Public Health 28, no. 4 (November), cky218.095. https://doi.org/10.1093/eurpub/cky218.095.
O’Malley, Kimberly J., Karon F. Cook, Matt D. Price, Kimberly Raiford Wildes, John F. Hurdle, and Carol M. Ashton. 2005. “Measuring diagnoses: ICD code accuracy.” Health services research 40(5p2): 1620-39. https://doi.org/10.1111/j.1475-6773.2005.00444.x.
Pavillon, Gérard, Lars A. Johansson, D. Glenn, S. Weber, B. Witting, and S. Notzon. 2007. “Iris: A Language Independent Coding System For Mortality Data.” In WHO – Family of International Classifications Network –FIC. Annual Meeting. Trieste, Italy, 28 October - 3 November 2007.
Prime Minister’s Decree 12 January 2017. “Definizione e aggiornamento dei livelli essenziali di assistenza, di cui all’articolo 1, comma 7, del decreto legislativo 30 dicembre 1992, n. 502.” Gazzetta Ufficiale, 18 marzo 2017, no. 65, Allegato 7.
Proctor, Mark. 2012. “Drools: A Rule Engine for Complex Event Processing.”In Applications of Graph Transformations with Industrial Relevance. AGTIVE 2011, edited by A. Schürr, D. Varró, G. Varró. Lecture Notes in Computer Science 7233. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-34176-2_2.
Quan, Hude, Łukasz Moskal, Alan J. Forster, et al. 2014. “International variation in the definition of ‘main condition’ in ICD-coded health data.” Int J Qual Health Care 26(5): 511-15. https://doi.org/10.1093/intqhc/mzu064. Epub 2014 Jul 2.
Rinaldi, Rita, Luca Vignatelli, Massimo Galeotti, Giuseppe Azzimondi G., and Piero De Carolis. 2003. “Accuracy of ICD-9 codes in identifying ischemic stroke in the General Hospital of Lugo di Romagna (Italy).” Neurol Sci 24: 65-69. https://doi.org/10.1007/s100720300074.
Rios, Anthony, and Ramakanth Kavuluru. 2018. “EMR Coding with Semi-Parametric Multi-Head Matching Networks.” In Proceedings of the conference. Association for Computational Linguistics. North American Chapter Meeting 2018: 2081-91. https://doi.org/10.18653/v1/N18-1189.
Sforza, Vincenzo, Duilio Carusi, Luigi Bertinato, Marino Nonis, and Silvia Surricchio. 2021 “L’approccio del PROGETTO IT.DRG per la rilevazione dei costi standard delle prestazioni ospedaliere. Il modello IT:COST.” Bilancio Comunità Persona, n. 2: 82-116. https://dirittoeconti.it/articolo-rivista/lapproccio-del-progetto-it-drg-per-la-rilevazione-dei-costi-standard-delle-prestazioni-ospedaliere-il-modello-itcost/.
Silvestri, Stefano, Francesco Gargiulo, Mario Ciampi, and Giuseppe De Pietro. 2020. “Exploit multilingual language model at scale for icd-10 clinical text classification.” In 2020 IEEE Symposium on Computers and Communications (ISCC), Rennes, France, 2020, 1-7. https://doi.org/10.1109/ISCC50000.2020.9219640.
Soroush, Ali, Benjamin S. Glicksberg, Eyal Zimlichman, et al. 2024. “Large Language Models Are Poor Medical Coders - Benchmarking of Medical Code Querying.” NEJM AI 1(5) (April 19, 2024). https://doi.org/10.1056/AIdbp2300040.
Spolaore, Paolo, Stefano Brocco, Ugo Fedeli, et al. 2005. “Measuring accuracy of discharge diagnoses for a region-wide surveillance of hospitalized strokes.” Stroke 36, no. 5 (May): 1031-34. https://doi.org/10.1161/01.STR.0000160755.94884.4a.
Sukanya Chongthawonsatid. 2017. “Validity of Principal Diagnoses in Discharge Summaries and ICD-10 Coding assessments based on national health data of Thailand.” Health Inform Res 23, no. 4 (October): 293-303.https://doi.org/10.4258/hir.2017.23.4.293.
Sundararajan, Vijaya, Patricia S. Romano, Hude Quan, et al. 2015. “Capturing diagnosis-timing in ICD-coded hospital data: recommendations from the WHO ICD-11 topic advisory group on quality and safety.” Int J Qual Health Care 27(4): 328-33. https://doi.org/10.1093/intqhc/mzv037.
Tatham, Andrew J. 2008. “The increasing importance of clinical coding.” British Journal of Hospital Medicine 69(7): 372-3.
Wang, Cheng, Chenlong Yao, Pengfei Chen, Jiamin Shi, Zhe Gu, and Zheying Zhou. 2021. “Artificial Intelligence Algorithm with ICD Coding Technology Guided by the Embedded Electronic Medical Record System in Medical Record Information Management.” J Healthc Eng 30;2021:3293457.https://doi.org/10.1155/2021/3293457.
Williamson, Ashton, David de Hilster, Amnon Meyers, Nina Hubig, and Amy Apon. 2024. “Low-resource ICD Coding of Hospital Discharge Summaries.”In Proceedings of the 23rd Workshop on Biomedical Language Processing, August 16, 2024, 548-58. Association for Computational Linguistics.https://aclanthology.org/2024.bionlp-1.45.pdf.
World Health Organization (WHO). 2016. “International Statistical Classification of Diseases and Related Health Problems 10th Revision. Volume 2.” Geneva: World Health Organization.
World Health Organization (WHO). 2019/2021. International Classification of Diseases, Eleventh Revision (ICD-11). https://icd.who.int/browse11.
World Health Organization (WHO). 2024. “ICD-11 Coding Tool.” https://icd.who.int/ct/icd11_mms/en/release.
Zavaroni, Carlo, Antonia Fanzutto, Elia Nardo, Vincenzo Della Mea, and Lucilla Frattura. 2018. “Morbidity coding in ICD-11 (and ICHI): a decision tree to identify the main condition.” In WHO-FIC Annual Meeting Booklet. Seoul, 22-27 October 2018. WHO. #307.
Zhang, Zachariah, Liu Jingshu, and Razavian Narges. 2020. “BERT-XML: Large scale automated ICD coding using BERT pretraining.” In Proceedings of the 3rd Clinical Natural Language Processing Workshop, 24-34, Online. Association for Computational Linguistics. https://doi.org/10.48550/arXiv.2006.03685.
##submission.downloads##
Pubblicato
Fascicolo
Sezione
Licenza
Copyright (c) 2024 Cacucci Editore

Questo lavoro è fornito con la licenza Creative Commons Attribuzione - Non commerciale - Condividi allo stesso modo 4.0 Internazionale.